The Capacity and Precision of Visual Working Memory for Object and Ensembles

  • Юрий Алексеевич Марков National Research University Higher School of Economics
  • Наталья Александровна Тюрина National Research University Higher School of Economics
  • Юлия Михайловна Стакина National Research University Higher School of Economics
  • Игорь Сергеевич Уточкин National Research University Higher School of Economics
Keywords: visual working memory, ensemble perception, object perception

Abstract

Previous research has documented the limited capacity of visual working memory (VWM) for color objects set at 3-5 items. Another line of research has shown that multiple objects can be stored in a compressed form of ensemble. However, existing data is more likely to testify that VWM can store no more than two such compressed units. But the nature of this discrepancy can be methodological: VWM for ensembles was never tested using methods that are applied in the research of VWM for objects. Here we have tested the capacity and precision of VWM for objects and ensembles using two standard methods – change detection and continuous report with a mixture model. We found that VWM for both types of units showed the similar capacity and precision when critical psychophysical parameters, such as foveal density and area are controlled. We also showed that this quantitative similarity between objects and ensembles is provided by a mechanism that represents each ensemble as a holistic VWM chunk as efficiently as it represents any single object.

Downloads

Download data is not yet available.

References

1. Allik, J., Toom, M., Raidvee, A., Averin, K., & Kreegipuu, K. (2013). An almost general theory of mean size perception. Vision Research, 83, 25-39.

2. Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Science, 15, 122-131.

3. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111.

4. Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences, 106, 7345-7350.

5. Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157-162.

6. Ariely, D. (2008). Better than average? When can we say that subsampling of items is better than statistical summary representations? Perception and Psychophysics, 70, 1325-1326.

7. Attarha, M., & Moore, C. M. (2015). The capacity limitations of orientation summary statistics. Attention, Perception and Psychophysics, 77, 1116-1131.

8. Attarha, M., Moore, C. M., & Vecera, S. P. (2014). Summary statistics of size: Fixed processing capaci -ty for multiple ensembles but unlimited processing capacity for single ensembles. Journal of Experimental Psychology: Human Perception and Performance, 40, 1440-1449.

9. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628.

10. Baddeley, A. D. (1986). Working memory. Oxford, UK: Clarendon Press.

11. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 47-89). New York: Academic Press.

12. Bauer, B. (2009). Does Stevens’s power law for brightness extend to perceptual brightness averaging? Psychological Record, 59, 171-186.

13. Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384-392.

14. Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487-502.

15. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4-4.

16. Chong, S. C., Joo, S. J., Emmanouil, T.-A., & Treisman, A. (2008). Statistical processing: Not so implausible after all. Perception and Psychophysics, 70, 1327-1334.

17. Chong, S. C., & Treisman, A. M. (2003). Representation of statistical properties. Vision Research, 43, 393-404.

18. Chong, S. C., & Treisman, A. M. (2005). Statistical processing: Computing average size in perceptual groups. Vision Research, 45, 891-900.

19. Corbett, J. E. (2017). The whole warps the sum of its parts: Gestalt-defined-group mean size biases memory for individual objects. Psychological Science, 28(1), 12-22.

20. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.

21. Dakin, S. C., & Watt, R. J. (1997). The computation of orientation statistics from visual texture. Vision Research, 37, 3181-3192.

22. Fougnie, D., Asplund, C. L., & Marois, R. (2010), What are the units of storage in visual working memory? Journal of Vision, 10(12), 27.

23. Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17, R751-R753.

24. Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35, 718-734.

25. Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576.

26. Huang, L. (2015). Statistical properties demand as much attention as object features. PLoS ONE, 10(8), e0131191.

27. Im, H. Y., & Chong, S. C. (2014). Mean size as a unit of visual working memory. Perception, 43, 663-676.

28. Im, H. Y., Park, S. J., & Chong, S. C. (2015). Ensemble statistics as units of selection. Journal of Cognitive Psychology, 27, 114-127.

29. Jiang, Y., Chun, M. M., & Marks, L. E. (2002). Visual marking: selective attention to asynchronous temporal groups. Journal of Experimental Psychology: Human Perception and Performance, 28, 717-730.

30. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.

31. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Science, 17, 391-400.

32. Marchant, A. P., Simons, D. J., & De Fockert, J. W. (2013). Ensemble representations: Effects of set size and item heterogeneity on average size perception. Acta Psychologica, 142, 245-250.

33. Maule, J., & Franklin, A. (2016). Accurate rapid averaging of multihue ensembles is due to an limited capacity subsampling mechanism. Journal of the Optical Society of America A, 33, A22-A29.

34. Myczek, K., & Simons, D. J. (2008). Better than average: alternatives to statistical summary representations for rapid judgments of average size. Perception and Psychophysics, 70, 772-788.

35. Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strongobject” hypothesis. Perception and Psychophysics, 64, 1055-1067.

36. Pashler, H. (1988). Familiarity and the detection of change in visual displays. Perception and Psychophysics, 44, 369-378.

37. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception and Psychophysics, 16, 283-290.

38. Pierce, J. W. (2007). PsychoPy - psychophysics software in Python. Journal of Neuroscience Methods, 162, 8-13.

39. Poltoratski, S., & Xu, Y. (2013). The association of color memory and the enumeration of multiple spatially overlapping sets. Journal of Vision, 13(8), 6. Retrieved from http://www.journalofvision.org/content/13/8/6

40. Robitaille, N., & Harris, I. M. (2011). When more is less: Extraction of summary statistics benefits from larger sets. Journal of Vision, 11(12), 18. Retrieved from http://www.journalofvision.org/content/11/12/18

41. Simons, D. J., & Myczek, K. (2008). Average size perception and the allure of a new mechanism. Perception and Psychophysics, 70, 1335-1336.

42. Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10), 9.

43. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 19, 331-351.

44. Utochkin, I. S. (2016). Visual enumeration of spatially overlapping subsets. The Russian Journal of Cognitive Science, 3, 4-20.

45. Utochkin, I. S., & Tiurina, N. A. (2014). Parallel averaging of size is possible but range-limited: A reply to Marchant, Simons, and De Fockert. Acta Psychologica, 146, 7-18.

46. Watamaniuk, S. N. J., & Duchon, A. (1992). The human visual-system averages speed information. Vision Research, 32, 931-941.

47. Watson, D. G., Maylor, E. A., & Bruce, L. A. M. (2005). The efficiency of feature-based subitization and counting. Journal of Experimental Psychology: Human Perception and Performance, 31, 1449-1462.

48. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48-64.

49. Whiting, B. F., & Oriet, C. (2011). Rapid averaging? Not so fast. Psychonomic Bulletin and Review, 18, 484-489.

50. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120-1135.

51. Yamanashi Leib, A., Kosovicheva, A., & Whitney, D. (2016). Fast ensemble representations for abstract visual impressions. Nature Communications, 7, 13186.

52. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601-621.

53. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 452, 233-235.
Published
2018-11-06
How to Cite
МарковЮ. А., ТюринаН. А., СтакинаЮ. М., & УточкинИ. С. (2018). The Capacity and Precision of Visual Working Memory for Object and Ensembles. Psychology. Journal of the Higher School of Economics, 14(4), 735-755. https://doi.org/10.17323/1813-8918-2017-4-735-755
Section
Articles section